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Outline

1. Lithium results
- lower edge densities
- self-shielding effect
- thermal collapse
2. Flibe results
- differences from Lithium
- low- and high-recycling regimes

3. Auxiliary heating and localized evaporation region

4. Summary and plans
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Impurity intrusion has three regimes for Li

Lithium density at core edge (1/m )3
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Dense Li plasma can form to shield core uL.

D-T core-edge density = 10 18, -3
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Fewer impurity ions from Li vapor
penetrate to the core than for F vapor uL.

- Cases correspond to standard tokamak configuration
- X denotes onset of radiation/condensation instability

- F comes from assumed Flibe wall; Li from Li or SnLi
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Fluorine core density varies a factor of ~50
from low to high hydrogen recycling, R uL-

Effective hydrogen particle lifetime is 1 / (1-R),
so divertor density rougly scales with it

1017: 0.98

Fluorine core-edge density (m )3

10} -.
: 0.5 '
r 025 Low High
recycling | recycling
107 I
10° 10" 10°

1/ (1-R) for hydrogen



Side-wall impurity influx sets tokamak
liquid temperature limits

Impurity transport in edge region from 2-D UEDGE code
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Details for Flibe temperature limits based
on core impurity penetration ul_.

Conclusions from simulations to date:
(for close-fitting wall ~10 cm from separatrix)

e For high recycling (R > 0.9), tokamak Flibe wall limit is
below 450 C

e Forlow recycling (R < 0.5) and successful auxiliary
heating, the tokamak Flibe wall limit is at best 500 C

Further work for reduced core impurities from Flibe wall:

e Improve intervention techniques
- move wall farther from core with auxiliary heating
- use injection deutrium stream to sweep vapor out

- new inovation

e Analyze other configurations with natural low
recycling edge-plasmas, e.g., the FRC



Emissivity shows low Te peak for Li

Emissivity (10 9 m #&)
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Auxiliary heating can be roughly constrained
by power considerations

UEDGE calculations show energy cost per neutral
- for lithium, 200-300 eV
- for fluorine, 2000-3000 eV
- these high values come from ionizing to
upper charge states near the core boundary
-- For an ITER -size device, assuming gas flux
of 102% m?s with area of 1000 m %ields

- for lithium, power is ~4 MW

- for fluorine, power is ~40 MW

-- Up buttons
- smaller, higher power density devices

- separating vapor plasma from edge plasma



Reducing core power decreases shielding;
auxiliary heating can help as replacement

Lithium density at core density (1/m )3
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Gas wall source profiles for two extremes
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Localized evaporation source lowers
impurity influx; rad. instability still limits uL-

- Standard lithium low-recycling case

- X denotes radiation/condensation instability
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Summary of impurity modeling

with UEDGE L

Divertor impurity sources

e Completed first UEDGE/WBC coupling for Li sputtering
which shows low Li core concentration - see Brooks

Wall impurity sources

e Low hydrogen-recycling plasmas can tolerate higher
evaporative impurity flux than high recycling plasmas

e Lithium is better shielded from the core plasma
than fluorine

e For tokamaks without auxillary removal methods,
an all Flibe wall/divertor likely will have excessive core
Impurities; others devices should be better (e.g., FRC)

e Auxillary heating of edge plasma can significantly
reduce impurity influx

e For low-density, low-recycling edge-plasmas, self
shielding by impurity plasma helps limit core impurities



Plans

Assess auxiliary heating and larger wall/separatrix gap

Improve model: kinetic effects, more coupling to WBC

Analyze different configurations (e.g., FRC, spheromak)

Compare with experiments - TFTR, DIlI-D, CDX-U
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